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Abstract. We present a new model of rubber elasticity where linear forces act to constrain the fluctuations
of the eigenmodes of the phantom model. The model allows us to treat the constrained junction and
the tube model within the same, transparent formalism, does not require any further approximations,
and is particularly suited for the analysis of simulation data for (strained) model polymer networks. As an
interesting side result we show that in order for the model to be consistent, the constraints (but not the mean
polymer conformations!) have to deform affinely, a severe restriction that might also apply to other models.
Complementary, we prove in analogy to the derivation of the virial theorem that introducing constraints
into the phantom network Hamiltonian leads to extra terms in addition to the usual Doi-Edwards formulas
for the polymer contribution to the stress tensor which vanish only for affinely deforming constraints.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion – 62.20.Dc Elasticity,
elastic constants – 61.41.+e Polymers, elastomers, and plastics

1 Introduction

Most current models of rubber elasticity are based on the
phantom model [1–3] combined with the idea that entan-
glements between the polymer chains reduce the fluctu-
ations [4–21]. Being deformation dependent, the effective
constraints then contribute to the elastic properties of the
network. What divides the community, however, is the
question which fluctuations are affected by the mutual im-
penetrability of the network strands.

The classical theories [1–9] date back more than half
a century and can qualitatively explain many aspects of
the physics of rubber elasticity. They are based on the
observation that a flexible, randomly coiled polymer in a
melt with a mean-square end-to-end distance

〈
r2
〉

can be
viewed as a linear entropic spring with spring constant

k =
3kBT

〈r2〉
and assume that the elastic response of rub-

ber has its sole origin in the elongation of the network
strands. In the two original classical models, the phan-
tom model and the junction affine model, the junction
points are considered to be free to fluctuate or fixed in
space respectively. Later refinements considered partially
restricted fluctuations.

Edwards [10] argued in 1967 that the average effect of
the complicated topological constraints on the conforma-
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tion of a network strand is to confine the strand to the
neighborhood of a mean conformation. The tube model
provides on a mean-field level a unified view on networks
and entangled polymer melts [11–14]. There is convincing
evidence from simulations [22–25] as well as from neu-
tron scattering experiments [26–30] for the existence of
the tube, but it still remains to be shown that it is possi-
ble to calculate the elastic response from this ansatz.

That the importance of entanglements is still some-
times disputed is due to the inconclusiveness of rheologi-
cal experiments [31–37]. It is very complicated to prepare
well-characterized model systems and to relate experimen-
tal data to structural properties or to analytical theory in
a unique way. Due to the lack of microscopic information
theories can only be tested indirectly by comparing mea-
sured and predicted stress-strain curves or by extrapolat-
ing the moduli to the limit of vanishing cross-link density.
This has lead to ambiguous and contradictory results. Al-
though SANS investigations of deformed networks have
partially closed this gap [29,30], we have argued [38], that
due to the direct and simultaneous accessibility of micro-
scopic and macroscopic information, computer simulations
(for a recent review see Ref. [39]) are in a much better po-
sition to decide these issues. In the ideal case, it should
be possible to test statistical mechanical models of rubber
elasticity without using any adjustable parameters. Two
questions are of principal interest:

1. How do the microscopic chain conformations change
in response to a macroscopic deformation?
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2. What is the relation between the (change of the) mi-
croscopic conformations and macroscopically observed
stresses and deformation free energies?

Theories worked out for a comparison to experimental
data are not necessarily well-suited for a quantitative test
of the underlying ideas. For example, many theories de-
scribe limiting cases such as networks with strand lengths
much smaller or larger than the melt entanglement length,
as it is the case for the constrained junction and tube mod-
els respectively. Simulations and experiments, on the other
hand, often fall into the crossover region between these two
extremes. The purpose of the present paper is the intro-
duction of a conceptually transparent framework for the
analysis of constrained fluctuations and their contribution
to the shear elastic properties of a polymer network and to
illustrate some subtleties concerning the second question
related to the presence of constraints.

The paper is organized as follows. First we review the
phantom model which treats the network strands as ideal
entropic springs and completely ignores entanglements. In
the phantom model, the eigenmodes only depend on the
connectivity and not on the size and shape of the net-
work and therefore do not contribute to the shear modu-
lus. In Section 3 we introduce the constrained mode model
(CMM) where linear forces act to constrain the fluctua-
tions of the eigenmodes of the phantom model. The model
is exactly solvable and makes no assumptions on the length
of the network strands. In the discussion (for details see
the appendix) in Section 4 we point out how the con-
strained junction and the tube model can be obtained
as simple limiting cases of the CMM. We close by some
general considerations concerning the deformation depen-
dence of the constraints. Quite surprisingly, one is within
the CMM almost restricted to the simplest possible choice,
affinely deforming constraints. In particular, most of the
functional forms which were used in other constrained flu-
cutation models of rubber elasticity in order to explain
non-affine chain deformations and to improve the agree-
ment with measured stress-strain curves lead to incon-
sistencies in the present case. While we have no general
arguments against the use of non-affinely deforming con-
straints, we show that they generate extra terms in the
stress tensor in addition to the usual Doi-Edwards ex-
pression. A quantitative test of the CMM and of the Doi-
Edwards formula in computer simulations of model poly-
mer networks will be presented in a future publication [40].

2 The phantom model

The Hamiltonian of the phantom model [1–3] is given by

Hph =
k

2

∑
〈i,j<i〉

r2
ij , (1)

where 〈i, j < i〉 denotes a pair of nodes which are con-
nected by a polymer chain and rij(t) = ri(t) − rj(t) the
distance between them. Due to the linearity of the springs
the problem separates in Cartesian co-ordinates x, y, z.

Furthermore, a conformation of a network of harmonic
springs can be analyzed in terms of either the bead posi-
tions ri(t) or the deviations ui(t) of the nodes from their
equilibrium positions1 Ri. The latter are characterized by
a force equilibrium

∑
j Rij ≡ 0, where j indexes all nodes

which are connected with node i. In this representation,
the Hamiltonian separates into two independent contribu-
tions from the equilibrium extensions of the springs and
the fluctuations, where the latter can be written as a sum
over independent normal modes or phonons up [41,42]:

Hph =
k

2

∑
〈i,j<i〉

Rij
2 +

k

2

∑
〈i,j<i〉

uij
2 (2)

=
k

2

∑
〈i,j<i〉

Rij
2 +

kp

2

∑
p

up
2. (3)

In the second form, the calculation of the shear modulus
of the phantom model from the deformation dependence
of the free energy is formally straightforward:

Fph(λ) =
k

2

∑
〈i,j<i〉

Rij
2(λ)

− kBT
∑
p

log

(∫
d3upe

−
1

kBT
kp
2 up

2
)
. (4)

Elastic properties

In this paper we always consider uni-axial elongations

←→
λ =

λ

1/
√
λ

1/
√
λ

 . (5)

This volume-conserving deformation (det(
←→
λ ) = 1) is the

standard choice [4] for rubber-like materials, since they
can be considered to be incompressible with a Poisson
ratio of 1

2 . The corresponding Lagrangian strain tensor is

←→ε =
1

2

(←→
λ
t←→
λ − 1

)
, (6)

where the superscript t indicates matrix transpose. The
deformation dependent free energy and the shear modulus

1 Formally, a phantom network collapses to the size of one
network strand when the Hamiltonian (1) is used with open
boundary conditions. In reality, this collapse is prohibited by
volume interactions between the chains. Within the phantom
network model one can avoid the collapse by either fixing some
junction points on the sample surface [1,2], or, more conve-
niently, by spanning the network over a fixed volume with the
help of periodic boundary conditions. See R.T. Deam, S.F. Ed-
wards, Phil. Trans. R. Soc. A 280, 317 (1976).
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of the phantom model are then given by

Fph(λ) = E0(λ) +
3kBT

2

∑
p

log

(
kp

kBT

)
(7)

E0(λ) =
k

2

∑
〈i,j<i〉

(←→
λ Rij

)2

(8)

Gph =
1

3

1

V

d2Fph

dλ2

∣∣∣∣
λ=1

=
1

3

1

V

d2E0

dλ2

∣∣∣∣
λ=1

=
〈R2

strand〉

〈r2〉
ρstrand kBT (9)

where
〈
r2
〉

the mean square end-to-end distance of the

un-cross-linked strands in a melt, and 〈R2
strand〉 = 〈R2

ij〉
the expectation value of the square of the mean extension
of the network strands. The interpretation of equations
(7, 9) is simple. If a sample is deformed, the equilibrium
positions of the junction points change affinely (Eq. (8)).
The fluctuations, on the other hand, depend only on the
connectivity but not on size and shape of the network.
The shear modulus of the phantom model can therefore
be calculated without having to integrate out the dynamic
eigenmodes of the network.

It is easy to see that dividing the network strands
into Gaussian sub-strands (i.e. formally introducing addi-
tional, two-functional junction points along the strands)
changes nothing for a phantom network. The spring con-
stant is doubled for a strand of half the original length,
i.e. if an entropic spring of spring constant k is replaced
by a linear sequence of N springs the latter have a spring
constant of Nk. Furthermore, the equilibrium positions of
the new cross-links are along the line connecting the equi-
librium positions of the original endpoints. Since 〈R2

N 〉 =
1
N2 〈R2〉, one finds kN

∑N
i=1〈R

2
N 〉 = k〈R2〉 and the pre-

dicted modulus remains unchanged.

Finite deformations change the free energy density of
the phantom model by

1

V
∆Fph =

1

2

(
λ2 +

2

λ
− 3
)
Gph, (10)

and give rise to a normal tension 〈σT 〉 =〈
σxx −

1
2 (σyy + σzz)

〉
, where the σαα are the di-

agonal elements of the microscopic stress tensor

〈←→σ 〉 = 1
V

←→
λ ∂F

∂←→ε

←→
λ
t
. This can be shown in general

in analogy to the virial theorem (see Sect. 4). For the
special case of classical rubber elasticity, equation (10),
one finds

〈σT 〉 (t→∞) =
(
λ2 −

1

λ

)
G (11)

by writing the change in the free energy density for a de-
formation of a sample of size L3

0 in terms of normal forces
Fαα acting on the side walls of the sample and expressing

the forces via pressures:

L3
0df = GL3

0(λ− λ−2)dλ = Fxxdx+ Fyydy + Fzzdz

=
(
Fxx − (Fyy + Fzz)/(2λ

3/2)
)
L0dλ

=

(
σxxL

2
0/λ−

1

2
(σyy + σzz)λ

1/2L2
0/λ

3/2

)
L0dλ

= σTL
3
0λ
−1dλ.

Fluctuations

Although the eigenmodes do not contribute to the shear
modulus of the phantom model, they have nevertheless
received considerable attention [3,41–43]. This was due to
the problem of how to calculate 〈Rij

2〉 for a randomly
cross-linked network. Here we re-derive the result from
some simple and general considerations.

Consider a randomly cross-linked melt and a melt of
the unconnected strands. For instantaneous cross-linking
the statistics of the strand conformations and, in particu-
lar, 〈r2

ij〉 is the same in both cases [4]. The precise value
follows from applying the equipartition theorem to the
melt of unconnected strands: k

2 〈r
2
ij〉 = 3

2kBT . The inter-
nal “energy” of the network, on the other hand, is given by
the energy of the equilibrium conformation E0 = k

2 〈R
2
ij〉

plus 1
2kBT per fluctuating mode. The number of modes

equals three times the number of junction points and lat-
ter is for an f -functional network given by 2

f times the

number of strands. This corresponds to a thermal energy
of 3 × 2

f ×
1
2kBT per strand, i.e. k

2 〈u
2
ij〉 = 3

f kBT and

k
2 〈R

2
ij〉 =

(
3
2 −

3
f

)
kBT :

〈u2
ij〉 =

2

f

〈
r2
〉

(12)

〈R2
ij〉 =

(
1−

2

f

)〈
r2
〉
· (13)

As a result, the shear modulus of the phantom model can
be written in a form, where it only depends on the strand
density and the functionality of the network [3]:

Gph =

(
1−

2

f

)
ρstrand kBT. (14)

In principle, one can calculate the exact eigenmodes or
generalized Rouse modes from the knowledge of the con-
nectivity matrix for a particular network [42,44]. In the
appendix we propose an intuitive approximation, where
the movements of the junction points and of the strands
between them are considered to be independent.

3 The constrained mode model

The phantom model completely neglects “entanglements”
between network strands due to their mutual impene-
trability. The classical view of the problem, associated
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with the name of Flory, is to assume that their main ef-
fect is a partial suppression of the junction fluctuations
[5–9]. The non-classical theories of rubber elasticity dis-
cuss constraints like tubes [11–14] or slip-links [15,21,45]
that in addition also restrict the fluctuations of the strands
between the junction points.

Often these constraints are introduced as additional,
single-node terms into the phantom model Hamiltonian,
which constrain the movement of the monomers and junc-
tion points. The standard choice are anisotropic, harmonic
springs of strength

←→
l (λ) between the nodes and points

ξi(λ) which are fixed in space:

Hconstr =
∑
i

1

2
(ri − ξi(λ))

t ←→
l (λ) (ri − ξi(λ)) . (15)

Equivalently one can restrict the nodes to box-like regions
of width δ(λ) = (δx(λ), δy(λ), δz(λ)):

exp (−Hconstr/kBT ) =
∏
i

Θ
(
ri − (ξi(λ)

−
1

2
δ(λ))

)
Θ

(
(ξi(λ) +

1

2
δ(λ)) − ri

)
, (16)

where Θ(r) ≡ Θ(x)Θ(y)Θ(z) is the product of the step
functions of the components of the vector.

Here we study a slightly different constraint model,
where instead of restricting the motion of individual
nodes, deformation dependent generalized forces couple
to the eigenmodes up of the phantom network:

Hconstr=
∑
p

1

2
(up−vp(λ))t

←→
lp (λ) (up−vp(λ)). (17)

The idea to base the analysis on (single chain) eigenmodes
is not new, but has apparently not been fully exploited.
Edwards and Vilgis [13] proposed a tube model where the
primitive path is given by constrained long-wavelength
eigen (Rouse) mode of the chain and the fluctuations are
due to unimpeded short-wavelength Rouse modes. In the
appendix we derive analoguous results in the framework of
our “constrained mode model” (CMM). In a similar spirit
Duering, Kremer, and Grest [25,46] tried to determine the
shear elastic properties of rubber-like materials from the
partial relaxation of (approximate) eigenmodes in the un-
deformed state. Here we provide a more formal base for
this ansatz and as a result propose a modified formula for
the shear relaxation modulus.

As for the comparison of the confinement generated
by the two types of constraining Hamiltonians, equations
(15, 17), we note that both can be used to model straight
tubes with unimpeded fluctuations of the chain parallel
to the tube axes. And while both models allow one to ar-
bitrarily displace the average positions of the monomers
from their equilibrium positions in the phantom model,
both also loose the anisotropic character of the monomer
diffusion parallel and perpendicular to a twisted, ran-
dom walk-like tube. In what they differ is that equa-
tion (15) neglects correlations between the restoring forces

acting on different monomers (and therefore suppresses
also short-wavelength fluctuations), while equation (17)
neglects that correlations between different Rouse modes
allow to displace the chain along the tube axes without
generating restoring forces. However, while neither model
is exact, the CMM equation (17) has the big advantage
that it can be solved without further approximations.

As the sum of the phantom and constrained mode
model Hamiltonians equations (1, 17) is diagonal and
quadratic in the modes, the model is straightforward to
solve. Consider one Cartesian component α of a particu-
lar mode up. Under the influence of the constraining force,
the mode has a non-zero mean excitation

Upα(λ) =
vpα(λ)

kp/lpαα(λ) + 1
(18)

and the fluctuations around this mean value are reduced

〈δu2
pα〉 ≡ 〈(upα − Upα(λ))2〉 =

kBT

kp + lpαα(λ)
· (19)

In the most general case the deformation dependent free
energy has the form

Fpα(λ) =
kp

2
Upα(λ)2 +

lpαα(λ)

2
(vpα(λ) − Upα(λ))

2

+
kBT

2
log

(
kp + lpαα(λ)

kBT

)
, (20)

while the contribution of the pth mode to the shear mod-

ulus is given by
1

3

d2

dλ2
(Fpx + Fpy + Fpz). The first two

terms in equation (20) represent elastic energies stored
in the mean excitations of the mode and the constrain-
ing spring respectively. In contrast to the phantom model,
equation (7), the log-term, representing the fluctuations,
is deformation dependent.

The parameters of any constrained fluctuation model
have to be chosen in such a way that the average strand
conformations in the unstrained state remain unchanged
compared to the phantom model. This condition is very
easy to express for the constrained mode model. While
in the absence of constraints a mode undergoes thermal

fluctuations of width 〈u2
pα〉 =

kBT

kp
, the excitations in

the constrained mode model are the sum of the non-
vanishing mean excitations equation (18) and the (re-
duced) thermal excitations equation (19). By demanding
that 〈u2

pα〉 = 〈U2
pα〉+ 〈δu2

pα〉 one obtains

〈v2
pα〉 =

1

γp
〈u2
pα〉

〈U2
pα〉 = γp〈u

2
pα〉

〈δu2
pα〉 = (1− γp)〈u

2
pα〉

γp =
lp

kp + lp
·

The parameter γp measures how strongly the fluctuations
of the pth mode are confined. The extreme cases are γp = 0
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and γp = 1 corresponding to completely free and com-
pletely frozen fluctuations respectively. Note, that aver-
aging over the quenched disorder (free energies etc. are
calculated with fixed vectors vp(λ) assigned to each mode
and averaged afterwards over the (Gaussian) distribution
of constraints characterized by 〈v2

pα〉) does not require any
further approximations.

The limiting cases impose certain restrictions on the

deformation dependence of the parameters
←→
lp (λ) and

vp(λ). The following arguments apply, strictly speaking,
only to the constrained mode model equation (17), since
previous constrained junction and tube models introduced
constraints on the motion of individual monomers, equa-
tions (15, 16). However as we will show that relations
which have been used in order to improve the agreement
with experimentally measured stress-strain curves lead to
inconsistencies in the present case, one might wonder, if
these problems are more general and not just an artifact
of the slightly different manner the constraints are intro-
duced in equation (17).

As already noted by Flory, the centers of the con-
straints have to move affinely with the sample

vp(λ) =
←→
λ vp. (21)

This is, for example, necessary in order to ensure that
completely frozen (i.e., in general, long-wavelength)
modes with γp = 1 deform affinely with the sample. In
the limit of γp = 0 equation (20) can be rewritten as

Fpα(λ, γp = 0) =
KBT

2

lpαα(λ)

lpαα

(
vpα(λ)

vpα

)2

. Since uncon-

strained fluctuations must not contribute to the shear
modulus, the deformation dependence of vpα(λ) and
lpα(λ) may not be chosen independently. The simplest
choice consistent with this requirement is:

←→
lp (λ) =

(←→
λ
)−2←→

lp , (22)

which can be visualized as cavities that move and de-
form affinely with the sample. In particular, it is not
possible to let the strength of the constraints vary with
a different power as in some tube models [14]. Flory
and Erman proposed more complicated relations of the
type lp/lp(λ) = λ2 (1 + γζ(λ− 1)) in our notation. By
varying the parameter ζ they were able to improve the
agreement of their constrained junction model with mea-
sured stress-strain curves. However, at least in the present
case, this ansatz leads to inconsistencies. Demanding that
limγ→1G = 1, limits one’s freedom in choosing to ζ = 0
or ζ = 1, and in the remaining non-trivial case one finds
d

dγ
G

∣∣∣∣
γ=0

< 0 or negative contributions of weakly con-

strained modes to the shear modulus. Nevertheless, there
seem to be other possibilities. At least, we have not found
any theoretical arguments that would exclude, for ex-
ample, lp/lp(λ) = λ2

(
1 + γ2(λ− 1)

)
. As a consequence,

equation (22) involves an assumption and we will later
come back to the point how it may be tested in computer
simulations.
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Fig. 1. Contribution of a partially constrained mode to the
restoring forces of a deformed network in Mooney-Rivlin rep-

resentation. The values of γ =
κ

κ+ 1
were chosen to corre-

spond to Figure 2 in Flory’s first paper on constrained junction
models [6].

Some general conclusions can be drawn with respect
to the microscopic deformations in the constrained mode
model with equations (21, 22). The mean-excitations,

Upα(λ)

Upα(1)
=

λαα

(1− γ)λ2
αα + γ

, (23)

of partially frozen modes deform sub-affinely. Only in the
limit γ → 1 one finds Up(λ) = λUp(1). A similar result
holds for the width of the fluctuations:

〈δu2
pα(λ)〉

〈δu2
pα(1)〉

=
λ2
αα

(1− γ)λ2
αα + γ

· (24)

While the fluctuations are deformation independent for
unconstrained modes, their width increases sub-affinely
for 0 < γ < 1. For completely frozen modes with γ ≡
1, 〈δu2

pα(λ)〉 ≡ 0 independent of λ. Finally, one obtains
for the deformation dependent free energy and the shear
modulus of the constrained mode model:

Fpα(λ) =
KBT

2

1

1 + γp
(
λ−2
αα − 1

)
+
kBT

2
log

(
1 +

γp

1− γp
λ−2
αα

)
(25)

Gcm = Gph +
kBT

V

∑
p

γ2
p . (26)

Inspection of equation (25) shows that one recovers the
ideal stress-strain behavior equation (11) only in the two
limiting cases of γ = 0 and γ = 1. In Figure 1 we have plot-
ted some results for intermediate values in the Mooney-
Rivlin form often used to represent experimental data.
Qualitatively, the curves are very similar to those obtained
from Flory’s constrained junction model [6] and we can
therefore expect the same, good agreement with exper-
imental data. However, as we have made no particular
assumptions about which modes are constrained by the
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entanglements, it is clear that nothing is to be learned
from the shape of the stress-strain curves about the valid-
ity of the classical models of rubber elasticity.

4 Discussion

While the constrained mode model as presented above is
formally very simple, an obvious difficulty is hidden in the
employment of the eigenmodes of the phantom model. In
principle, it is possible to calculate these so-called general-
ized Rouse modes from the knowledge of the connectivity
matrix for a particular network [42,44]. In the appendix
we work out an intuitive approximation which in a simi-
lar form is employed by all constrained fluctuation models
of rubber elasticity, where the movements of the individ-
ual junction points and network strands are considered
to be independent. For the fluctuations of the junction
points around their mean positions we follow Flory and
use an Einstein-model. For the network strands we follow
the community insofar as we employ single chain Rouse
modes, but insist on the apparently uncommon choice of
using boundary conditions which correspond to fixed as
opposed to free chain ends. Such Rouse modes can be used
to describe the fluctuations of monomers around their re-
spective equilibrium positions. Together the Einstein and
the Rouse modes form a complete and orthogonal basis
set. In particular, they are like the true eigenmodes inde-
pendent of size and shape of the network. In contrast to the
Rouse modes for long paths through the network, which
were used by Duering et al. [25,46] to analyze their sim-
ulation data, the autocorrelation functions of the present
modes decay to zero for non-entangled systems. In fact,
the two types of modes allow a much clearer distinction
between classical and non-classical entanglement effects.
In the appendix we show how (i) by constraining the Ein-
stein modes one obtains the crossover from the phantom
to the affine model described by the constrained junction
models of classical rubber elasticity [5–9] and how (ii) by
additionally constraining the Rouse modes one recovers
the tube model [11–14] with a strand length independent
shear modulus. In the general case, the CMM allows one
to study the whole crossover from networks with strand
lenghts N � Ne, which are well-described by classical
rubber elasticity, to entanglement dominated systems with
N � Ne.

Even with the simplified mode spectrum, the CMM is
probably still too detailed (i.e., has too many free param-
eters γp) to be tested quantitatively in experiments. As
we have already pointed out, the worst approach is prob-
ably to rely on a fit of rheological data to the stress-strain
curves that follow from equation (25) regarding γ as a pa-
rameter characterizing the average confinement of what-
ever modes. Judging from the inconclusiveness of previ-
ous investigations along these lines [31–37], it is clear that
more microscopic input is needed. But even neutron scat-
tering experiments [29,30,47] are limited to comparing the
data to structure factors calculated from models. Clearly,
more information on, for example, the wave-length depen-
dence of the parameters γp of the constrained mode model

is needed, before a fit could be attempted. We note that
recent data are in very good agreement with a variant of
the tube model which tries to account for non-affine de-
formations of both, the tube axes and diameter [29,30].
As we have pointed out, such effects appear rather natu-
rally in the framework of the constrained mode model as
a consequence of partially frozen modes with 0 < γp < 1.

While the great number of parameters γp of the con-
strained mode model is disadvantageous for a compari-
son with experiments, the opposite is true for the inter-
pretation of simulation data. Current molecular dynamics
simulations of model polymer networks cover the relevant
time and length scales and allow to directly determine the
restoring forces in strained systems [38,39,48–50]. At the
same time, and in contrast to experiments, one has ac-
cess to the actual chain conformations. This allows one to
measure the parameters γp of the CMM in a simulation of
an undeformed network. In subsequent runs of the same
system under strain one can directly test the predictions
of the CMM for the microscopic deformations, equations
(23, 24), and the elastic properties, i.e., for the deforma-
tion dependence of the network free energy equation (25),
the corresponding restoring forces, the small strain shear
modulus equation (26), and the modified mode analysis
expression (B.1) for the shear relaxation modulus G(t)
[25,46].

As a last point we address a general aspect of all con-
strained fluctuation models of rubber elasticity, namely
the relation between the polymer contribution to the
stress tensor and the deformation dependence of the con-
straints. Within the CMM, equation (25), the normal ten-

sion σT =
λ

V

dF

dλ
induced by a deformation equation (5)

can be written in the form

〈σT 〉 =
1

V

∑
〈i,j<i〉

k

(
X2
ij(λ) −

1

2

(
Y 2
ij(λ) + Z2

ij(λ)
))

+
1

V

∑
p

kp

〈
u2
px(λ)−

1

2

(
u2
py(λ) + u2

pz(λ)
)〉

.

(27)

One the one hand, one might well have expected this
result. Equation (27) is the equivalent of the Doi and
Edwards [11] formula for the contribution of free poly-
mers to the stress tensor and has the same form as the
virial theorem (see below) for harmonic springs. On the
other hand, it is quite surprising that the CMM should
yield the same (measurable!) expression as the phantom
model without constraints, i.e. that the constraints in the
CMM do not contribute directly to the restoring forces,
even though equation (20) shows that they store elastic
energy.

To better understand this apparent contradiction we
re-derive in the following the virial theorem for deforma-
tion dependent interactions. It turns out that the valid-
ity of the Doi-Edwards stress formulas is bound to non-
trivial conditions on the deformation dependence of the
constraints. In fact, one recovers equation (27) for any
theoretical model that augments the phantom model
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Hamiltonian by terms which become deformation invari-

ant under affine transformations r→
←→
λ r.

Consider a general Hamiltonian H =
∑
i<j U(|rij |)

(e.g. the phantom model Hamiltonian Eq. (1)) without

constraints. Using scaled co-ordinates ri =
←→
λ si, dis-

tances are calculated by contraction with the metric tensor
←→
Λ =

←→
λ

t←→
λ . By this change of variables the deforma-

tion dependence of the partition function is transferred
from the integration bounds to the Hamiltonian:

Z = det(
←→
λ )

N

×

∫
ds3N exp

− 1

kBT

∑
i<j

U

(√
s tij
←→
Λ sij

) .(28)

Differentiation of the free energy F = −kBT log(Z) with
respect to the deformation parameter λ shows that sys-
tems responds to a deformation equation (5) by develop-
ing a normal tension:

1

V

d F

d λ
=

1

V

〈
d H

d λ

〉
=

1

λ

〈
σxx −

1

2
(σyy + σzz)

〉
=
σT

λ
(29)

where

σαβ =
2

V

←→
λ

d H

d Λαβ

←→
λ
t

=
1

V

∑
i<j

U ′(rij)

rij
(rij)α (rij)β (30)

is the instantaneous stress tensor. For harmonic interac-
tions, as in the phantom and Rouse model Hamiltonians
for polymer melts and networks, equation (30) reduces to
the Doi and Edwards [11] formula for the polymer con-
tribution to the stress tensor. Differentiating twice and
taking the limit λ → 1 yields an expression for the small
strain elastic modulus:

3G = 〈Tr←→σ 〉 −
V

kBT
(
〈
σ2
T

〉
− 〈σT 〉

2)

+
1

V

〈∑
i<j

(
U ′′ −

U ′

rij

)
(x2
ij −

1
2 (y2

ij + z2
ij))

2

r2
ij

〉
.

(31)

Similar expression for other types of deformation have
been discussed in the literature and are widely used in
simulations [49,51,52]. For the phantom and Rouse model
Hamiltonians the last, so-called hyper-virial term van-
ishes. In these cases equation (31) describes the polymer
contribution to the shear modulus in analogy to the Doi
and Edwards [11] formula for the stress tensor.

Now consider the constraint-Hamiltonian equa-
tion (17). If one uses the scaled variables, it becomes in-
dependent of the deformation provided the constraints de-
form affinely as in equations (21, 22). The same holds for

the constraint-Hamiltonians equations (15, 16). In such a
case, differentiating the free energy with respect to λ yields
the same expressions as for the phantom model without
constraints. The expectation values do, of course, change
as the averages are taken over a different ensemble. For
theories which employ non-affinely deforming constraints
additional terms appear, for example, in the stress-tensor
equation (30). This general result is interesting, since in
a computer simulation equations (30, 31) can be evalu-
ated for the true microscopic as well as for the effective
entropic interactions2. A comparison of equations (26, 31)
for the shear modulus, on the other hand, provides a direct
test for the importance of correlations between different
modes.

To summarize, with the constrained mode model
(CMM) equation (17) we have introduced an exactly solv-
able constrained fluctuation model of rubber elasticity
which is particularly suited for the analysis of simulation
data. It differs from most other models in that deforma-
tion dependent linear forces couple to the eigenmodes of
the phantom network instead of restricting the motion of
individual monomers or junction points. Nevertheless, the
tube model as well as the constrained junction models
of classical rubber elasticity can be recovered as limiting
cases in an approximation where the true eigenmodes are
replaced by a combination of Einstein and Rouse modes
for the movements of the junction points and network
strands respectively. In the general case, the CMM al-
lows one to study the whole crossover from networks with
strand lengths N � Ne which are well-described by clas-
sical rubber elasticity to entanglement dominated systems
with N � Ne. In the CMM the confinement of the mo-
tion of each mode is characterized by a single parame-
ter γ and sub-affine microscopic deformations, equations
(23, 24), and deviations from the ideal stress-strain behav-
ior (Fig. 1) are predicted as a result of partial confinement
of modes with 0 < γ < 1. The small strain shear modulus
of the CMM, equation (26), has a particularly simple form
and suggests a modification of the mode analysis expres-
sion equation (B.1) for the shear relaxation modulus G(t)
proposed by Duering et al. [25,46]. Quite surprisingly, we
find that the CMM can only be formulated consistently for
affinely deforming constraints, equations (21, 22). While
this is, of course, no formal proof that the same restric-
tions also apply to other constrained fluctuation models,
we have shown in analogy to the derivation of the virial
theorem that for a system with constraints the usual Doi-
Edwards formulas for the polymer contribution to the
stress tensor also require affinely deforming constraints.
In this case, one is in the interesting situation that the
constraints only contribute explicitely to the deformation
free energy but not to the tensions in a strained system.

2 Such a comparison has already been carried out for an en-
tangled melt, but not for a cross-linked melt with permanent
topological constraints. Gao and Weiner [53] showed that the
Doi-Edwards formula does work in the reptation regime, i.e.
on the time-scales where there is no fundamental difference
between a melt and a network.
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Note added

After this work was finished Rubinstein and Panyukov [54]
published a paper where they develop a complementary
view of the relation between non-affine chain deformations
and corrections to the neo-hookian elasticity. These results
are obtained using a constraint-Hamiltonian of the type of
equation (15) for virtual chains coupled to the backbone
of long network strands and effectively confining them to
tube-like regions. Note that as in the CMM the strength
of the confining potential is assumed to vary affinely with
the deformation.

Appendix A: Classical and tube models as
limiting cases of the constrained mode model

In principle, one can calculate the exact eigenmodes or
generalized Rouse modes from the knowledge of the con-
nectivity matrix for a particular network [42,44]. Here we
propose an approximation, where the movements of the
junction points and of the strands between them are con-
sidered to be independent. The ansatz has the advantage
that it provides an intuitive distinction between the clas-
sical and tube contributions to the shear modulus.

A.1. Constraining the motion of the junction points

Classical rubber elasticity only considers the extension of
the network strands as a whole and can therefore be for-
mulated in terms of the motion of the junction points.
The following approximation corresponds to the Einstein-
model in solid-state physics and was, for example, also
used by Flory to estimate the contribution of the defor-
mation dependent fluctuations to the shear modulus of his
constrained junction model.

Consider a particular junction point i of an f -
functional network. If one assumes that its topological
neighbors are fixed at their equilibrium positions Rj , a dis-
placement uiα of node i in one spatial direction requires an
energy (fk/2)u2

iα. Treating these displacements as inde-
pendent eigenmodes (“Einstein modes”) with spring con-
stant kp = fk, one can use the equipartition theorem to

obtain 〈u2
iα〉 =

kBT

fk
. As a consistency check, we note

that this result implies that the extension of a particu-
lar network strand should undergo thermal fluctuations

of a width 〈|uij |2〉 = 2〈|ui|2〉 = 2 × 3
kBT

fk
= 2

f

〈
r2
〉

in

agreement with equation (12).
To demonstrate that constraining these modes has the

same effects as predicted by the conventional constrained

junction models [5–9] we show that the shear modulus
calculated from the constrained mode model interpolates
between the phantom and junction affine network lim-
its. That partially constrained modes lead to the typical
Mooney-Rivlin deviations from the ideal stress-strain re-
lation equation (11) was already discussed in Section 3.

While it is obvious from equation (26) that Gcm re-
duces to Gph for γp ≡ 0, one needs to know the actual
number of modes to calculate Gcm in the opposite limit of
γp ≡ 1. Using our result from Section 2 that there are 2/f
(three component) modes per network strand and equa-
tion (14) for the shear modulus of the phantom model one
finds

Gcm(γ ≡ 1) = Gph +
2

f
ρstrandkBT

= ρstrandkBT

= Gaff .

The junction affine model [4] is, in fact, the oldest model
of rubber elasticity. The assumption, that the surrounding
molecules suppress the movements of the junction points
so strongly that the latters’ instantaneous positions (and
not only their mean positions as in the case of the phantom
model) change affinely with the shape of the sample, leads
immediately to the above results for Gaff .

In reference [48] we quantitatively tested the classical
theories in computer simulations of model polymer net-
works. We determined the true shear moduli by measur-
ing the restoring forces in deformed networks and calcu-
lated parameter-free predictions from the phantom and
the junction affine model. By showing that the measured
shear moduli exceeded Gaff , we provided the first quanti-
tative proof that the classical theories overlook important
contributions to the entropy change in a deformed net-
work.

However, in the light of the present results our analy-
sis of the constrained junction models appears incorrect.
In reference [48] we calculated the classical modulus from
the observed deformation dependence of single strand en-
tropies. In the context of the constrained mode model this
corresponds to analyzing quantities of the type

E(λ) =
kp

2

〈
rij

2(λ)
〉

=
kp

2

(〈
Rij

2(λ)
〉

+ 2
〈
U2
pα(λ)

〉
+ 2

〈
δu2
pα(λ)

〉)
which are identical to the proper free energies equa-
tion (20) only in the limits γ = 0 and γ = 1. While
evaluating the free energy of the constrained mode model
is quite cumbersome (the constraining springs are not di-
rectly observable!), we show in Section 4 that one can el-
egantly circumvent this problem by comparing measured
and calculated normal tensions.

A.2. Constraining the strand fluctuations between
the junction points

The non-classical theories of rubber elasticity discuss con-
straints like tubes, slip-links [15,45] or the presence of filler
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material, that restrict the fluctuations of the strands be-
tween the junction points. Treating the strands as inde-
pendent, these fluctuations are most naturally analyzed
in terms of single chain Rouse-modes [11]. Consider a lin-
ear Gaussian chain of Nstrand + 1 beads with a Hamil-

tonian H =
kNstrand

2

∑Nstrand
i=1 (ri(t)− ri−1(t))

2
and the

spring constants k Nstrand chosen as discussed in Sec-
tion 2. For the present purposes, it turns out to be conve-
nient to regard the end points as fixed at r0(t) ≡ R0

and rNstrand(t) ≡ RNstrand , instead of the usual open
boundary conditions. One can then write the the devi-
ations ui(t) = ri(t) − Ri from the equilibrium positions
Ri = R0 + i/Nstrand (RNstrand −R0) in terms of sin-
Rouse-modes:

up(t) =
1

Nstrand + 1

Nstrand∑
i=0

ui(t) sin

(
pπi

Nstrand

)
(A.1)

H =
k

2
(R0 −RNstrand)2 +

∑
p

kp

2
up

2 (A.2)

kp =
2π2k

Nstrand
p2. (A.3)

As the Einstein modes describe the fluctuations of the
junction points, the Rouse modes equation (A.1) describe
the fluctuations of the monomers around their respec-
tive equilibrium positions. Together the Einstein and the
Rouse modes form a complete and orthogonal basis set. In
particular, they are like the true eigenmodes independent
of size and shape of the network and allow an intuitive dis-
tinction between classical and non-classical contributions
to the shear modulus.

The correspondence with the tube model is most
conveniently discussed in the limit of long strands of
Nstrand → ∞ Gaussian units, where the classical contri-
bution to the shear modulus becomes negligible: Gclass ≤

Gaff =
ρ

Nstrand
kBT → 0 (ρ here denotes the number

density of the Gaussian units). Consider, for example, the
ansatz

γp =


1 for p <

Nstrand

Ne

0 for p >
Nstrand

Ne

(A.4)

which freezes all modes with a wavelength larger
than a certain “entanglement length” Ne. The mean-
square distance between the equilibrium positions
of neighboring Gaussian units, 〈(Ui −Ui+1)2〉 =

8
∑
p γp

kBT

kp
sin2

(
pπ

Nstrand

)
, as calculated from the

first Nstrand/Ne frozen modes is of the order of
〈r2(Ne)〉/N2

e . The corresponding tube axes has a length

of
Nstrand

Ne

√
〈r2(Ne)〉 and deforms affinely with the sam-

ple. The tube width, on the other hand, is given by the
fluctuations of a monomer around its equilibrium position,

〈δu2
i 〉 = 2

∑
p(1− γp)

kBT

kp
, and of the order of R2

g(Ne) in-

dependently of the deformation. Finally, the shear modu-
lus is obtained by multiplying the number of frozen modes
per chain, Nstrand/Ne, with the chain density ρ/Nstrand:

Gtube =
Nstrand

Ne

ρ

Nstrand
kBT =

ρ

Ne
kBT. (A.5)

As already discussed in Section 3, partially frozen modes
with 0 < γp < 1 lead to a weaker than affine deforma-
tions of both, the tube axes and the tube diameter, and to
the characteristic Mooney-Rivlin corrections to the ideal
stress-strain curves.

Appendix B: A mode analysis expression
for the shear relaxation modulus

In this section we comment on the mode analysis as it was
used by Duering et al. [25,46] to estimate the shear relax-
ation function of model polymer networks in computer
simulations of undeformed samples. A heuristic general-
ization of the shear modulus equation (26) of the con-
strained mode model for finite times is

Gcm(t) = Gph +
kBT

V

∑
p

(
〈up(t) · up(0)〉

〈up2〉

)2

, (B.1)

where the sum over the modes includes both, the Einstein
and the Rouse modes (A.1) for the fluctuations of the
junctions points and the monomers around their respec-
tive equilibrium positions. Equation (B.1) has the correct
limiting behavior for large times and reduces to the Rouse-
model result [11]

GRouse(t) = Gph +
kBT

V

∑
p

e−2t/τp (B.2)

for γ = 0. The factor of two in the exponential between
the auto-correlation function of a mode 〈up(t) · up(0)〉 =〈
up

2
〉

exp(−t/τp) and its contribution to the shear relax-
ation modulus lead Duering et al. [25,46] to the slightly
different ansatz

G(t) =
kBT

V

∑
p

〈Xp(2t) ·Xp(0)〉〈
Xp

2
〉 t→∞

−→
kBT

V

∑
p

γp,

(B.3)

where the Xp are now the usual free chain Rouse modes

Xp(t) =
1

Npath

N∑
i=1

ri(t) cos

(
pπ(i− 1)

Npath − 1

)
−

1

2Npath

[
r1(t) + (−1)prNpath(t)

]
(B.4)

used for the analysis of the conformations of long paths
through the network. Equation (B.3) does not agree with
equation (26), but reduces by construction to the Rouse
result equation (B.2).
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Why do we now propose to use the network strand
Rouse modes, up, equation (A.1), instead of the free chain
Rouse modes, Xp, equation (B.4)? First of all, we note
that even for a phantom network the auto-correlation
functions of the free chain Rouse modes, 〈Xp(t) ·Xp(0)〉,
do not decay to zero. This is simply due to the fact that
each network strand has in contrast to a free chain a non-
vanishing mean extension. As a consequence, the signature
of permanent entanglements in polymer networks is much
less clear, when the conformations are analyzed in terms
of the free chain Rouse modes, than when they are ana-
lyzed in terms of the network strand Rouse modes. There
the incomplete decay of a mode auto-correlation func-
tion 〈up(t) · up(0)〉 directly signals the existence of effects
which are ignored by the classical theories of rubber elas-
ticity. Also, since the free chain Rouse modes when applied
to a phantom network become deformation dependent,
they are only of limited use for the analysis of the con-
formations of strained networks. While these are practical
reasons for the use of the network strand Rouse modes,
equation (A.1), the difference between equation (B.1) and
equation (B.3) suggests that the question of which type of
modes is used is not just a matter of convenience. Ac-
cording to the results we obtained for the constrained
mode model there is a subtle difference in how the equilib-
rium extensions of the network strands contribute to the
shear modulus. The part which is due to the cross-linking
and treated by the phantom model contributes linearly
(Eq. (14)), while the part that is due to the constraining

of fluctuations, γ =
〈U2
pα〉
〈u2
pα〉

, contributes only quadratically

(Eq. (26)). Using the free chain Rouse modes this differ-
ence is lost and the modulus over-estimated. In order to
make the distinction and to use equation (26), it is nec-
essary to employ modes which as the true eigenmodes of
the phantom model depend only on the connectivity of
the network.

References

1. H. James, J. Chem. Phys. 15, 651 (1947).
2. H. James, E. Guth, J. Chem. Phys. 15, 669 (1947).
3. P.J. Flory, Proc. Royal Soc. Lond. A. 351, 351 (1976).
4. L.R.G. Treloar, The Physics of Rubber Elasticity (Claren-

don Press, Oxford, 1975).
5. G. Ronca, G. Allegra, J. Chem. Phys. 63, 4990 (1975).
6. P.J. Flory, J. Chem. Phys. 66, 5720 (1976).
7. B. Erman, P.J. Flory, J. Chem. Phys. 68, 5363 (1978).
8. P.J. Flory, B. Erman, Macromol. 15, 800 (1982).
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